Ch 3. Fluid Kinematics Multimedia Engineering Fluids FlowDescriptions Steady &Unsteady Streamlines,Streaklines Velocity &Acceleration IrrotationalFlow
 Chapter 1. Basics 2. Fluid Statics 3. Kinematics 4. Laws (Integral) 5. Laws (Diff.) 6. Modeling/Similitude 7. Inviscid 8. Viscous 9. External Flow 10. Open-Channel Appendix Basic Math Units Basic Equations Water/Air Tables Sections Search eBooks Dynamics Fluids Math Mechanics Statics Thermodynamics Author(s): Chean Chin Ngo Kurt Gramoll ©Kurt Gramoll

 FLUID MECHANICS - CASE STUDY Introduction Problem Description In a testing facility, the inlet and outlet velocities of a nozzle along the center line are measured to be 10 m/s and 50 m/s, respectively. Technician John is asked to provide a customer with the velocity and acceleration distribution of the fluid in the nozzle. The length of the nozzle is 0.5 m, as shown in the figure. Questions Derive the equations for the velocity and acceleration. What is the local acceleration of the fluid entering and exiting the nozzle? Approach Assume that the flow is one-dimensional, and it varies linearly along the centerline in the nozzle.

Practice Homework and Test problems now available in the 'Eng Fluids' mobile app
Includes over 250 problems with complete detailed solutions.
Available now at the Google Play Store and Apple App Store.