First, find the velocity of the particle just before it strikes the bar. From conservation of energy,
T1 + V1 = T2 + V2
0.5mvA2 + 0 = 0 + mgh
vA = [32.2(5) / 0.5]0.5 = 17.94 ft/s (down)
The impact will transfer the motion of the particle to the motion of the bar attached,
e = [(-v'B) - v'A] / [(-vA) - vB]
1 = (-v'B - v'A) / [-17.94 - 0]
17.94 = v'B + v'A
However, the linear velocity of B is related to the angular velocity of the bar,
-v'B = - ω'B rOB
v'B = ω'B (1 ft)
Combining gives,
17.94 = ω'B + v'A (1)
The angular momentum of the bar (with the particle attached) must be conserved, giving,
ΣHo = ΣH'o
mA (-vA) r = mA v'A r + Io (-ω'B)
2 (-17.94)(1) = 2 (v'A)(1) + Io(-ω'B)
-35.89 = 2v'A - Ioω'B (2)
Mass moment of inertia, Io
Io = mL2/12 + m(1.5)2 = 2(5)2/12
+ 2(2.25)
Io = 8.667 slug-ft2 (3)
Combining with Eqs. 1, 2 and 3 gives,
17.94 = ω'B + (-35.89 +
8.667ω'B) / 2
ω'B = 6.729 rad/s |